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Abstract 
The interest in the use of robots in the construction 

industry has been around for several decades; 
however, the advancement of technology for related 
applications has been slow. Considering that most 
construction robots are not fully automated and 
require extra guidance and instructions from the 
operators, an autonomous way for robots to 
understand how to execute specific construction tasks 
is needed. Reinforcement learning (RL) is a possible 
solution to this problem. Instead of explicitly detailing 
the solution to a problem, RL algorithms enable a 
robot to autonomously discover an optimal behavior 
through trial-and-error interactions with its 
environment. It constructs a learning model to solve 
various sequential decision-making problems. RL 
algorithms could help construction robots establish a 
learning process based on the feedback from the 
construction site and lead to an optimal strategy to 
finish the sequential construction work. Nowadays, 
on-site construction robots still require tedious work 
in preprogramming. Many other areas have used RL 
algorithms on different tasks, such as dexterous 
manipulation, legged locomotion, or pathing planning; 
thus, there is great potential for combining 
construction robot applications with RL algorithms. 

Despite these achievements, most works 
investigated single-agent settings only. However, 
many real-world applications naturally comprise 
multiple decision-makers that interact 
simultaneously, such as traffic modeling for 
autonomous vehicles and networking communication 
packages for multi-robot control. These applications 
have faced significant challenges when dealing with 
such high-dimensional environments, not to mention 
the challenges for the on-site construction robots. The 
recent development of deep learning has enabled RL 
methods to drive optimal policies for a sophisticated 
high-dimensional environment. To the best of our 
knowledge, there is currently no extensive survey of 
the applications of RL techniques within the 
construction industry. This study can inspire future 

research into how best to integrate powerful RL 
algorithms to achieve a higher-level autonomous 
control of construction robots and overcome resource 
planning, risk management, and logistic challenges in 
the industry. 
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1 Introduction 
With the expansion of technologies, the 

construction industry has seen significant attempts at 
robotization. Some single-purpose robots were 
designed to conduct specific tasks in highly controlled 
environments. These applications have shown 
promising results for single repetitive tasks. 
However, all these robotic applications do not have 
the capabilities to adapt their operations to unique 
work environments. Their motions implement 
mobility, and manipulations are preprogrammed by 
the expertise considering the characteristics of tasks 
and work environments, which limited the wide usage of 
such robotic systems. Thus, instead of preprogramming 
all the details, a way for the robot to learn by itself 
and adopt different scenarios on the construction site is 
necessary to develop construction robot applications. 
Reinforcement learning (RL) seems to be a promising 
solution to these problems. 

RL and optimization control theory are used to 
solve a wide range of tasks using a simple architecture 
where the agent operates in an environment that models 
the task it needs to fulfill. RL studies how to use past 
data to enhance the future manipulation of a 
dynamical system that adequately adapts to 
environmental changes [1]. Over the past decades, 
advances in RL have led robotics to be highly 
automated and intelligent, with safe operation 
instead of manual work for many challenging tasks. As 
an essential branch of machine learning, RL can realize 
sequential decision-making and has made a series of 
significant breakthroughs in robot applications. It has 
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led to a wide range of impressive progress in various 
domains, such as industrial manufacturing [2], board 
games [3], robot control [4], and autonomous driving [5]. 
Although so much success has occurred in various 
robotic domains, few studies have focused on robots in 
construction applications. 

The lack of attention for RL in the construction 
industry is due to its complexity [6]: with too many 
uncertainties on the job site and massive data from the 
dynamic environment, it is tough for the robot to model 
the tasks, set up the simulator, and get predictions from 
past results. However, considering the development of 
the digitalization of the construction industry, with the 
more standardized construction process and more 
modular products coming into the market, the 
construction work is far more predictable than it used to 
be. Besides, with BIM models becoming the norm in 
most job sites, the numerous information stored in the 
digitalized model can provide reliable data for simulation 
of the robot’s behavior. Thus, this study aims at 
establishing the connections between RL and 
construction robotic applications, trying to advance the 
functionality and reliability of the current construction 
robot systems. 

Therefore, a review of reinforcement learning 
applications in construction is presented herein to guide 
subsequent research. This paper aims to help researchers 
working in this field quickly place their work within the 
current spectrum, bearing in mind the current challenges 
and potential. The rest of this paper organizes as follows: 
Section 2 summarizes the state of the art of the algorithms 
and gives a brief overview of RL applications. Section 3 
provides a framework to figure out how to apply these 
algorithms to construction robot applications. Section 4 
presents a simple case study to adopt the RL algorithms 
and explains how to set up the algorithms and the 
environment. Section 5 discusses the results, and Section 
6 summarizes the findings and provides further 
advancement for future research. 

2 State-of-the-art RL 

2.1 RL Overview 
RL is about training an agent to interact with its 

environment. The agent arrives at different scenarios 
known as states by performing actions. Actions lead to 
rewards which could be positive or negative [8]. 

Some key terms that describe the essential elements 
of an RL problem are as shown in Figure 1: 

a. Environment — Physical world in which the 
agent operates 

b. State — Current situation of the agent 𝑆𝑆𝑡𝑡, Next 
situation 𝑆𝑆𝑡𝑡+1 after taking an action. 

c. Action — Step 𝐴𝐴𝑡𝑡 taken by the agent when in a 
particular state. 

d. Reward — Feedback from the environment 𝑅𝑅𝑡𝑡 . 
e. Policy — Method to map an agent’s state to 

actions. 
f. Q-Value — Expected return 𝑞𝑞π(𝑠𝑠,𝑎𝑎) starting 

from state 𝑆𝑆𝑡𝑡, following policy π, taking action 
𝐴𝐴𝑡𝑡, used to determine how good an action is. 

The RL process is a cycle that begins with the 
observation of a current state, choosing an action, 
observing the received state, and updating the evaluation 
of its value function based on the action taken. After that, 
the next cycle begins. 

 
Figure 1. Reinforcement learning scheme 

If the action’s highest quality value (Q-value) is 
selected in every state, it results in the optimal policy. Q-
learning finds an optimal policy in the sense of 
maximizing the expected value of the total reward over 
any successive steps, starting from the current state. 

Policy Gradient is another popular method. It does not 
calculate the Q-value but instead uses a policy. The 
policy learns a mapping from every state to act, and its 
objective is to find which actions lead to higher rewards 
and increase their probability. The policy gradient 
observes the environment, acts in it and keeps updating 
its policy based on its rewards. After multiple iterations, 
the policy converges to a maximum value. 

In section 4, our example that illustrates how to adopt  
Deep Reinforcement Learning (DRL), and Multi-agent 
Reinforcement Learning (MARL) on construction robots, 
will mainly focus on these two most used methods. 

2.2 DRL to handle the dynamic environment 
In situations with extensive state and action spaces, it 

is not feasible to learn the policy for each state and action 
pair. DRL allows agents to make decisions from high-
dimensional and unstructured input data [9] using neural 
networks to represent policies. DRL combines both the 
technique of giving rewards based on actions from RL 
and the idea of using a neural network for learning feature 
representations from deep learning [10]. DRL is among 
the most promising algorithms when a predefined 
training dataset is required, which suits robotic 
manipulation and control tasks [11]. 

DRL is firstly used in video games and simulated 
control, which does not connect with the constraints of 
learning in natural environments. In 2015, Mnih et al. [7] 
used a Deep Q-Network (DQN) structure to create an 
agent that outperformed a professional player in 49 
classic Atari games. With the development of algorithms, 
DRL has also demonstrated promises in enabling 
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physical robots to learn complex skills in the real world 
[12]. For example, DRL algorithms allow robots to learn 
tasks such as door opening [13] and to grasp and 
assemble objects using manipulators [14] with low-
dimensional state observations.  

With the exact logistics, by adopting the DRL 
algorithms to construction robots, robots can be trained 
in a dynamic environment. with simulation or execution 
in the real world, the robot will generate its dataset 
autonomously by accumulating its experience. And then, 
with iterations of training, the robot could find the 
optimal actions to take from the dataset generated when 
given an initial state.  

2.2.1 MARL to solve multi-agent situations 

As real-world problems have become increasingly 
complicated, there are many situations where a single 
DRL agent cannot cope. Traditional RL approaches such 
as Q-Learning or policy gradient are poorly suited for 
multi-agent environments. One issue is that each agent’s 
policy changes as the training progresses, and the 
environment becomes non-stationary from any 
individual agent’s perspective [15]. Learning among the 
agents sometimes causes changes in an agent’s policy 
and can affect the optimal policy of other agents. The 
estimated potential rewards of action would be inaccurate, 
and therefore, good policies at a given point in the multi-
agent setting could not remain so in the future. To solve 
this problem, based on the current literature, generally, 
two ways are used chiefly to solve this multi-agent 
framework. 

The centralized learning approach assumes a joint 
model for all the agents’ actions and observations [16]. A 
centralized policy maps the joint observation of all the 
agents to joint action. A significant drawback of this 
approach is that it is centralized in both training and 
execution and leads to an exponential growth in the 
observation and actions spaces with the number of agents.  

The centralized paradigm is usually a beneficial 
choice for exchanging information between agents, and 
problems like non-stationarity, partial observability, and 
coordination can be diminished [17]. In 2016, Mnih et al. 
[18] introduced a lightweight approach based on actor-
critic architecture by simultaneously training multiple 
agent-environment instances. As a result, many other 
works have started to extend the state-of-the-art single-
agent asynchronous advantage actor-critic algorithm to 
enable multi-agent training to accomplish more 
sophisticated tasks. Elfakharany et al. [19] proposed 
another framework using the policy gradient method 
known as Proximal Policy Optimization (PPO) to 
allocate path planning globally in a shared environment 
among multiple robots.  

The second method uses decentralized learning. In 
the decentralized execution paradigm, the agents make 
decisions independently according to their individual 
policies [16]. Multiple agents work together to learn a 

homogeneous, distributed policy toward a common goal 
without explicitly interacting. One of the advantages of 
this approach is that it makes the learning of 
heterogeneous policies easier. It can be beneficial in 
domains where agents may need to take on specific roles 
to coordinate and receive a reward. For example, 
Sartoretti et al. [20] proposed an approach that relied on 
decentralized policy in an entirely visual system and 
succeeded in multi-agent-based brick construction. With 
a similar actor-critic architecture. However, training 
individual policies does not scale to many agents. 
Because the agents do not share the experience, this 
approach adds additional sample complexity to the RL 
task. Second, as the agents are learning and adjusting 
their policies, the change in the policies make the 
environment dynamics non-stationary. Stored 
experiences can be quickly meaningless due to the 
changing dynamics of other agents. 

In addition to these two generally used methods, to 
speed up the learning procedure, another method can be 
used as a supplement by adding prior knowledge to guide 
the multi-agent learning process. Prior knowledge can 
dramatically help guide the learning process. These 
approaches significantly reduce the search space and, 
thus, speed up the learning process [21]. For example, in 
[22, 23], both the prior knowledge and prior rules are 
used to improve the DQN algorithm to solve the multi-
robot path-planning problem. 

3 RL with construction robots 
RL has been widely adopted in different industries 

such as video games, marketing, public services, and 
manufacturing; however, there is no review of combining 
RL techniques with the construction industry. Aiming to 
inspire future research into solving the single-agent and 
multi-agent construction task execution problem, this 
section presents a survey discussing the possible 
challenges, opportunities, and research areas for the 
adoption of RL with construction robots based on 
previous studies and applications in relevant areas. 

3.1 Challenges of construction robot training 
3.1.1 Hard to build up the training environment 

As an essential branch of machine learning, In 
comparison to supervised and unsupervised learning, few 
works have been published using the RL algorithm in the 
construction research field. The main reason for this may 
be that RL is a trial and error-based algorithm, which is 
hard for researchers to build up the training scheme in 
construction scenarios [24]. It is hard to initialize the 
agent(s) and the environment. To address that, RL 
research has generally been divided into two types of 
works [10]. The first type uses simulated control by 
testing virtual data in a simulated environment to verify 
the feasibility of robotic manipulation in the real world. 
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The second type is to ask the robot to sense the natural 
environment and learn directly in a real-world 
environment through trials and errors. 

Due to the existence of many complex and random 
factors on the construction site, it is often impractical to 
develop an explicit construction environment based on 
the real-world situation. Construction sites are dynamic. 
Tracking changes and simulating real-world physics is 
hard in real-time. Besides, the simulation of robot models 
is also time-consuming. Generally, the simulation can 
only mimic the situation in small-scale scenarios, which 
is insufficient for large-scale construction operations. For 
real-world RL learning, errors or collision happens, and 
construction robotic systems are fragile and expensive. 
Therefore, it is not wise to test the robot directly on a 
dangerous construction site. 

3.1.2 Construction tasks are hard to simulate 

As the construction site evolves, it is hard to model 
the dynamics between states and actions and set up 
constraints and reward functions. In addition, 
construction tasks are unique for the construction 
application. No generalized building principles can be 
applied to all tasks or projects. Understanding the 
mapping between actions and states requires much 
expertise and prior knowledge to solve the physical 
equations and write down the scripts to control the robot, 
not to mention writing out the temporally and spatially 
coupled operational constraints or setting up specific 
goals for a characterized structure. 

Moreover, it is challenging to solve large-scale 
construction work in real-time. When optimization is 
needed, these methods must compute all possible 
solutions entirely or partially and choose the best one, so 
the computation process is time-consuming when the 
solution space is vast [25]. 

3.1.3 Multi-workers working in the same 
environment with different roles 

The construction industry is overwhelmed with 
resource planning, risk management, and logistic 
challenges, resulting in design defects, project delivery 
delays, cost overruns, and contractual disputes. 
Systematically putting all these factors into robotic 
learning is also a challenging job. 

A construction job is a typical scenario that involves 
interaction among multiple agents, where emergent 
behavior and complexity arise from agents evolving 
together. For example, in collaborative construction 
activity, different agents have different tasks in the same 
environment to complete the activity. We need to define 
the working area for each individual and show them the 
path of their work routine to avoid physical collisions. 
Besides, because of the resource or material limitations, 
we need to wisely allocate the resources, arrange the 
sequence of operations for each agent, and build up a 
scheduling network. All these happen in a multi-agent 

domain. Successfully scaling RL to environments with 
multiple agents is crucial to improving construction 
robots’ eligibility.  

3.2 Opportunities 
3.2.1 Mega data generated and stored in the 

construction industry  

The Building Information Model (BIM) is a crucial 
contribution to the construction industry. The BIM 
consists of a three-dimensional graphical reproduction of 
the building geometry and a related database in which all 
data, properties, and relations are stored [26]. BIM 
provides digital models for RL simulation and massive 
data stored to represent components on the job site. With 
this information fed to the robot, we could build up a real-
time simulator for RL training, and a more accurate 
construction process could be simulated to represent the 
physical feedback. The virtual infrastructure represented 
in augmented reality (AR) will improve the user 
interaction with intelligent infrastructure for specific 
applications such as maintenance, training, and 
wayfinding. This could solve the first challenge that the 
construction industry lacks task planning simulators. 

3.2.2 Development of RL algorithms 

As stated in section 2, combined with developments 
in deep learning, DRL has emerged as an accelerator in 
related fields. DRL can help solve the problem of finding 
the optimal policy between state and actions through 
neural networks. Also, it can speed up the training 
process to make the simulation of construction tasks 
feasible. Besides, from the well-known success in single-
agent DRL, such as Mnih et al. [7], we now witness a 
growing interest in its multi-agent extension to simulate 
and find the optimal strategy in a higher dimension. This 
can better represent the real situations on the job site and 
show the potential to combine different roles of robotic 
workers to collaborate just like human beings.  

3.2.3 Human-robot interaction 

As stated in Section 2, one can ease the training 
process by combining it with the proper operation in 
advance, just as the supervised learning, but somehow it 
will not influence the general structure of the DRL 
algorithm. The only contribution is to speed up the 
convergence and add the correct episode into the 
simulation process with a user-defined map. As [27] 
stated, there has been a rising demand to provide human 
feedback in the agent training process. Another more 
feasible method is proposed by creating a goal map, 
which integrates human strategies before the training 
process [28]. RL algorithms provide other choices in 
human-robot collaboration with only limited prior 
knowledge from human beings. New formats such as 
augmented reality (AR) or game-engine-based 
simulation can be further developed to teach the robot 
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how to initialize the learning process, prevent unsafe 
behavior, and define the goal or reward accordingly. 

3.3 Research areas 
After identifying some of the challenges and 

opportunities for RL-based construction robot 
applications, we put forward some possible research 
areas to guide future research on such innovative systems. 

3.3.1 Simulator set up 

First, as we identified in the Challenges and 
Opportunities sections, capturing the real-world 
environment into simulated augmented ones is a priority 
for RL-based construction robots to run the simulation. 
BIM-based digital twins could provide detailed 
information and the possibility to track real-time changes 
during construction. The communication between such 
models with the robotic system needs a platform to 
connect robotic training scripts with the BIM 
environment. A possible solution is integrating the ROS 
system with game engines such as Gazebo, Unreal or 
Unity to render the environment and imitate the physics 
from the real world. The combination between ROS and 
BIM (digital twin) allows the user-defined scripts for 
robotic control and visualization in real-time. This could 
be a critical topic for future research. 

3.3.2 DRL algorithm advancing 

Second, developing RL algorithms for robotic control 
is always a trend for advancing such systems. For 
example, algorithms that allow a mobile robot to reach 
target positions and navigate safely are open research 
fields [29]. Besides, many researchers are working on 
robotic manipulation, such as grasping and door-opening 
robots. In this way, there is great potential for us to 
develop the RL algorithms based on construction 
activities. Many researchers have succeeded in 
implementing the single repetitive work of construction 
robots, such as bricklaying and drilling. With the formula 
representing the construction dynamics, we can quickly 
adapt the RL algorithm structure to allow construction 
robots to fulfill such tasks in a more dynamic 
environment. The robot will then learn how to modify its 
actions to adapt to the changes in the environment, 
making the construction robot brighter and more easily 
implemented in the industry. 

3.3.3 MARL algorithm advancing 

Finally, instead of low dimensional observation on 
the single-agent repetitive tasks, a higher dimensional 
network for MARL will automate construction tasks in 
collaborative ways just like human beings. As [30] stated, 
a higher level of on-site automated robots should fulfill 
perception, mobility, and manipulation tasks. Based on 
this and the essential characteristics of construction work, 
we can categorize the MARL algorithms into two parts 
[19]. Multi-Robot Task Allocation (MRTA) and Multi-

Robot Path Planning (MRPP) as two separate steps, each 
with its own set of algorithms. The MRTA algorithm 
assigns each robot to a task to determine the optimal way 
to allocate tasks and resources, follow the constraints and 
manipulate specific tasks under a predefined schedule. 
The MRPP algorithm guides each robot through the 
environment towards the assigned goal position while 
avoiding both static and dynamic obstacles such as 
temporary structures and moving laborers or other robot 
agents. 

4 Case study 
This section presents a path planning mobile robot 

application developed based on the [31] to set up a 
foundation for RL-based construction robots in single-
agent and multi-agent scenarios. 

4.1 Simulator set up 
We developed an experimental test for goal-oriented 

navigation and obstacle avoidance tasks using a 
TurtleBot3 Waffle Pi in the Gazebo simulation 
environment (Figure 2a) for behavior learning in 
autonomous agents.  

  
(a) (b) 

Figure 2. Gazebo environment for single-agent (a) and 
multi-agent robot environment path planning (b) 

In the Gazebo simulation, to define the state of the 
robot, we need to observe the environment and describe 
the spatial relationship between them. Besides, to 
measure the right movement of the robot, we also need to 
sense the position of the virtual markers. Thus, with 24 
sensors embedded in the robot model in the simulated 
environment, we define the state size for this single robot 
setting to be 26, 24 LDS (Laser Distance Sensor) values, 
along with the other two values: distances to goal and 
angle to goal.  

Where LDS denotes the (24) values that the LIDAR 
sensor emits, the Distance represents the distance to the 
goal, and the Angle is the angle between the robot 
heading and vector to the goal. 

4.2 DRL algorithm for single-agent robot 
navigation 

The reinforcement training algorithms were run on a 
GPU with NVIDIA GeForce GTX 2060 (the CPU was an 
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8-Core Intel (R) Xeon (R) CPU E7) and implemented 
using the OpenAI Baselines package with DQN and 
DDPG. The DDPG and DQN algorithms were modified 
to process a weighted reward. 

The goal is to train a Deep Q-Networks (DQN) agent 
to learn an optimal policy to navigate the robot from the 
initialized position to a goal position (user set up) with 
minimum effort. 

Besides, we also adopted the Deep Deterministic 
Policy Gradient (DDPG) agent-based training algorithm, 
which allows continuous control of a robot. In our case 
we have linear velocity (0 to 0.22 m/s) and angular 
velocity (-1 to 1 rad/s) as outputs. 

The robot has five actions that can act on depending 
on the type of state (Figure 3). The robot has a fixed linear 
velocity of 0.15 m/s, which determines the angular 
velocity. The linear velocity has discrete actions, as 
shown in Figure 3a. The angular velocity is determined 
by the state and the linear velocity, as shown in Table 1. 
The corresponding values are shown in Figure 3b. Table 
1 also shows the reward functions. 

  
(a) (b) 

Figure 3. Direction of the different actions (a) and 
corresponding angular velocity (b) 

Table 1. Reward function equation and parameters 

Reward function  Parameter 

𝜃𝜃 =
𝜋𝜋
2 + 𝑎𝑎𝑎𝑎𝑎𝑎 ∗

𝜋𝜋
8 + 𝜑𝜑 𝜃𝜃：𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝑓𝑓𝑎𝑎𝐴𝐴 

𝜑𝜑：𝑌𝑌𝑎𝑎𝑌𝑌 𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓𝑎𝑎 
𝑅𝑅𝜃𝜃 = 5 ∗ 1−𝜃𝜃 𝑅𝑅𝜃𝜃 ∶ 𝑅𝑅𝐴𝐴𝑌𝑌𝑎𝑎𝑓𝑓𝑅𝑅 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

𝑅𝑅𝑑𝑑 = 2
𝐷𝐷𝑐𝑐
𝐷𝐷𝑔𝑔  

𝑅𝑅𝑑𝑑 ∶ 𝑅𝑅𝐴𝐴𝑌𝑌𝑎𝑎𝑓𝑓𝑅𝑅 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑅𝑅𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝐴𝐴𝑎𝑎𝐴𝐴 
𝐷𝐷𝑐𝑐:𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴𝑎𝑎 𝑅𝑅𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝐴𝐴𝑎𝑎𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝑓𝑓𝑎𝑎𝐴𝐴 
𝐷𝐷𝑔𝑔 𝐴𝐴𝑟𝑟𝑑𝑑𝑓𝑓𝐴𝐴𝐶𝐶𝑎𝑎𝐴𝐴 𝑅𝑅𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝐴𝐴𝑎𝑎𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝑓𝑓𝑎𝑎 

𝑅𝑅 = 𝑅𝑅𝜃𝜃 ∗ 𝑅𝑅𝑑𝑑 
 

𝑑𝑑𝑓𝑓 −
1
2𝜋𝜋 < 𝜃𝜃 <

1
2𝜋𝜋 

𝑅𝑅𝜃𝜃 ≥ 0 𝐴𝐴𝐴𝐴𝑑𝑑𝐴𝐴 < 0 

4.3 MARL algorithm for robot navigation 
For the MARL algorithm, we used the DQN network 

to train four TurtleBot3 robots in the same working 
environment to achieve different goals (Figure 2b). We 
used the centralized learning or decentralized execution 
paradigm as discussed in the literature, in which each 
robot has a copy of the policy network, and each robot 
collects its data ( 𝑂𝑂𝑖𝑖𝑡𝑡,𝑎𝑎𝑖𝑖𝑡𝑡 , 𝑓𝑓𝑖𝑖𝑡𝑡 ) from the environment. Each 
robot (𝑑𝑑) at time step (𝑎𝑎) receives an observation (𝑂𝑂𝑖𝑖𝑡𝑡 ) and 
calculates the output action (𝑎𝑎𝑖𝑖𝑡𝑡  ) that drives the robot 
from the start position towards the goal position. The 
observation for each robot is composed of several parts: 

The first part is the relative positions of all the goals in 
the robot’s local polar coordinates. The second part is the 
relative positions of all the goals in the other moving 
robots’ local polar coordinates. Last but not least is the 
laser scanner measurements. The reward function 𝑓𝑓𝑖𝑖𝑡𝑡  is 
designed to ensure each robot move towards the unique 
zone set up separately. It penalizes getting near obstacles, 
colliding with other robots, or reaching the wrong goal 
position. 
After each episode, it sends data rollouts to a centralized 
copy of the policy. The gradients are then calculated on 
the centralized policy, and the centralized policy is 
updated. After that, each robot receives a copy of the 
updated policy weights to start collecting a new batch of 
data. The episode ends when either the robots have a 
collision, when all the robots reach all the goal positions, 
or when the episode duration is exhausted.  

5 Results 

5.1 Single-agent DRL 
To compare DDPG and DQN, it was necessary to 

define metrics. The reward was chosen as the primary 
indicator. Simulation results in a world of fixed obstacles 
and random start and end positions are shown in Figure 
4. DQN achieved the average target score somewhere 
after 200 episodes, with each episode consisting of a 
maximum of 120 time steps (Figure 4a). Training a 
DDPG generally tends to take more time compared to 
DQN. In this case, it took about 600 episodes to achieve 
the average score (Figure 4b). 

One of the reasons is that the number of parameters 
to deal with in DDPG is much higher than in DQN and 
requires more computation resources. DQN is a value-
based learning method, whereas DDPG is an actor-critic 
method. With DDPG, we have to fine-tune not one but 
two neural network models. Moreover, since the 
performance of the actor model strongly depends on the 
critic’s performance, they both must have proper stable 
growth, which is quite challenging to assure. 

  
(a) (b) 

Figure 4. DQN reward (Temporal difference) (a) and 
DDPG reward (Actor-critic) (b) 

The second reason is that DQN is training under 
discrete action space, with less uncertainty than the 
DDPG ones and continuous action selections. Although 
DQN was successful in more significant dimensional 
problems, such as the Atari game, the action space is still 
discrete. However, for many tasks of interest, especially 
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the physical control tasks of robots, the action space is 
mostly continuous. 

5.2 Multi-agent DRL (MARL) 
5.2.1 Decentralize learning  

Figure 5b shows that the cumulative reward increases 
over time and reaches a stabilized value, which means the 
decentralized training succeeds in collaborative path 
planning. The episode length, Figure 5a, shows the length 
of each episode in the environment after all agents reach 
the goals. The agents struggle to complete the tasks 
within the episode limit for the initial few episodes, but 
we observe a drop in the episode length as the agents 
learn. Finally, it reaches a platform, which indicates that 
it takes 20 s for all the robots to reach the assigned goals 
in each episode. For decentralized learning, it is easy to 
get to the desired reward with limited time steps. The 
steps to take are gigantic, requiring almost 4 million 
episodes of training periods; this is because multi-agent 
collaboration leads to an exponential growth in the 
observation and actions spaces with the number of agents. 

Nevertheless, the results are faster converge than the 
centralized training. Because all the agents do not need 
to share the experience, which eliminates additional 
sample complexity to set up the neural networks, it will 
take shorter to find the optimal strategies. Besides, the 
final result seems robust with a static platform. Less 
interface leads to a less dynamic environment, which 
simplifies the whole process. 

 

 

 
(a)  (b) 

Figure 5. Decentralized training result (DQN) Episode 
Length (a) and Cumulative Reward (b) 

5.2.2 Centralized learning 

Unlike decentralized learning, centralized learning 
could not reach the expected platform after a long 
training period in the first 2 million episodes (Figure 6a). 
The robot could not find the desired goals because the 
robot needed to find the desired joint observations in the 
same joint actions. This is because agents do share the 
experience, add additional sample complexity, and have 
significant computational burdens to set up the neural 
networks, which means it will take longer to initialize the 
simulation and find the optimal strategies. Thus, it takes 
longer for the robot to initialize the mapping between 
states and action, which takes longer for the robot to find 
the optimal trajectory in the beginning. As shown in 
Figure 6a, it takes almost 1,000 s for the first 3 million 
episodes to start. We can also see that the result from 

centralized learning is not as good as the one in 
decentralized learning. After a long training period, 5 
million episodes (Figure 6b), the final result still does not 
converge. This is because some mapping between state 
and actions is not correctly build-up and the interface 
between different agents makes it harder to map the states 
to the actions. The change in the policies makes the 
environment’s dynamics change, which will cause 
deviations in finding the optimal strategy and may take a 
longer time for the robot to adjust to reach its goals. 

The summary of the results (metrics used for 
comparison purposes) for each scenario is shown in 
Table 3. In general, for a single-agent reinforcement 
learning task, it is accessible for the robot to find the 
optimal solution in a short period. However, as more 
agents come into the same environment, the variables 
such as states and actions lead to explosive growth, which 
results in significant computational burdens and sample 
complexities. One of the robust ways to solve this 
problem is to ask the robots to share their experiences and 
get feedback in the same reference domain. If not all 
information is handled and transformed, the robot could 
also learn, but it is pretty hard to find the optimal strategy. 

  
(a) (b) 

Figure 6. Centralized training result (DQN) Episode 
Length (a) and Cumulative Reward (b) 

Table 3: Results for the metrics from each scenario. 

Metric 
DRL 

(DQN) 
MARL 

(Decentralized) 
MARL 

(Centralized) 
Episode 

to 
converge 

400 4e6 
5e6 

(Not converge) 

Episode 
length 20 s 20 s 

450 
(Not converge) 

6 Conclusions and outlook 
This study gives an overview of RL and DRL 

algorithms, discusses the challenges, opportunities, and 
research areas of the integration of RL with construction 
robot applications, and implements a part of them in a 
simple case study to illustrate how they can be used in 
construction robots applications for path planning. This 
study shows that, as expected, for simple tasks such as 
navigation, single-agent RL algorithms (e.g., DQN and 
DDPG) effectively solve the problem, with few iterations 
and durations to train. However, the computational 
resource (training period, episode length) grows 
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exponentially when more agents come into the same 
environment (more realistic for construction tasks). 
Using a decentralized learning algorithm is feasible to 
train multi-agents in those cases. The only problem is 
efficiency, as it takes a long training time. Still, the results 
are robust because this method provides a suitable 
evolving environment without too many changes to deal 
with, unlike centralized training. Therefore, it can be said 
that for the case study investigated, the decentralized 
learning approach could be better suited for complex 
construction task simulations. 

Ongoing work by the authors includes the 
investigation of other RL algorithms for single task 
manipulation and execution, such as bricklaying, 
painting, door installation, etc., to prove the eligibility of 
such a combination of construction robot applications 
with RL. Our future goals include: 1) Adopting and 
developing current DRL and MARL algorithms for 
construction robot applications. 2) Adopting the multi-
robot framework to solve complex tasks (e.g., laying 
bricks to build up a user-defined structure) through the 
cooperation of individual agents. 3) Assign different 
characters that allow different robots to work in different 
roles, such as manipulator, inspector, material delivery, 
etc. 4) Conducting the simulation in game engines such 
as Gazebo, Unreal, or Unity, and setting up 
communication among different platforms by using BIM 
models, this set up a great foundation for future 
verification in a real environment. 5) Benchmarking for 
efficiency of other algorithms to see which one is the best 
fit for the construction robot applications. 
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