
39th International Symposium on Automation and Robotics in Construction (ISARC 2022)

Reinforcement learning with construction robots: A
preliminary review of research areas, challenges and

opportunities

X. Xu 1 and B. García de Soto 1

1 S.M.A.R.T. Construction Research Group, Division of Engineering, New York University Abu Dhabi (NYUAD),
Experimental Research Building, Saadiyat Island, P.O. Box 129188, Abu Dhabi, United Arab Emirates

E-mail: xx927@nyu.edu; garcia.de.soto@nyu.edu

Abstract
The interest in the use of robots in the construction

industry has been around for several decades;
however, the advancement of technology for related
applications has been slow. Considering that most
construction robots are not fully automated and
require extra guidance and instructions from the
operators, an autonomous way for robots to
understand how to execute specific construction tasks
is needed. Reinforcement learning (RL) is a possible
solution to this problem. Instead of explicitly detailing
the solution to a problem, RL algorithms enable a
robot to autonomously discover an optimal behavior
through trial-and-error interactions with its
environment. It constructs a learning model to solve
various sequential decision-making problems. RL
algorithms could help construction robots establish a
learning process based on the feedback from the
construction site and lead to an optimal strategy to
finish the sequential construction work. Nowadays,
on-site construction robots still require tedious work
in preprogramming. Many other areas have used RL
algorithms on different tasks, such as dexterous
manipulation, legged locomotion, or pathing planning;
thus, there is great potential for combining
construction robot applications with RL algorithms.

Despite these achievements, most works
investigated single-agent settings only. However,
many real-world applications naturally comprise
multiple decision-makers that interact
simultaneously, such as traffic modeling for
autonomous vehicles and networking communication
packages for multi-robot control. These applications
have faced significant challenges when dealing with
such high-dimensional environments, not to mention
the challenges for the on-site construction robots. The
recent development of deep learning has enabled RL
methods to drive optimal policies for a sophisticated
high-dimensional environment. To the best of our
knowledge, there is currently no extensive survey of
the applications of RL techniques within the
construction industry. This study can inspire future

research into how best to integrate powerful RL
algorithms to achieve a higher-level autonomous
control of construction robots and overcome resource
planning, risk management, and logistic challenges in
the industry.

Keywords –
Construction robot; Deep reinforcement

learning; Multi-agent; Task allocation; Path
planning

1 Introduction
With the expansion of technologies, the

construction industry has seen significant attempts at
robotization. Some single-purpose robots were
designed to conduct specific tasks in highly controlled
environments. These applications have shown
promising results for single repetitive tasks.
However, all these robotic applications do not have
the capabilities to adapt their operations to unique
work environments. Their motions implement
mobility, and manipulations are preprogrammed by
the expertise considering the characteristics of tasks
and work environments, which limited the wide usage of
such robotic systems. Thus, instead of preprogramming
all the details, a way for the robot to learn by itself
and adopt different scenarios on the construction site is
necessary to develop construction robot applications.
Reinforcement learning (RL) seems to be a promising
solution to these problems.

RL and optimization control theory are used to
solve a wide range of tasks using a simple architecture
where the agent operates in an environment that models
the task it needs to fulfill. RL studies how to use past
data to enhance the future manipulation of a
dynamical system that adequately adapts to
environmental changes [1]. Over the past decades,
advances in RL have led robotics to be highly
automated and intelligent, with safe operation
instead of manual work for many challenging tasks. As
an essential branch of machine learning, RL can realize
sequential decision-making and has made a series of
significant breakthroughs in robot applications. It has

375

mailto:xx927@nyu.edu
mailto:garcia.de.soto@nyu.edu

39th International Symposium on Automation and Robotics in Construction (ISARC 2022)

led to a wide range of impressive progress in various
domains, such as industrial manufacturing [2], board
games [3], robot control [4], and autonomous driving [5].
Although so much success has occurred in various
robotic domains, few studies have focused on robots in
construction applications.

The lack of attention for RL in the construction
industry is due to its complexity [6]: with too many
uncertainties on the job site and massive data from the
dynamic environment, it is tough for the robot to model
the tasks, set up the simulator, and get predictions from
past results. However, considering the development of
the digitalization of the construction industry, with the
more standardized construction process and more
modular products coming into the market, the
construction work is far more predictable than it used to
be. Besides, with BIM models becoming the norm in
most job sites, the numerous information stored in the
digitalized model can provide reliable data for simulation
of the robot’s behavior. Thus, this study aims at
establishing the connections between RL and
construction robotic applications, trying to advance the
functionality and reliability of the current construction
robot systems.

Therefore, a review of reinforcement learning
applications in construction is presented herein to guide
subsequent research. This paper aims to help researchers
working in this field quickly place their work within the
current spectrum, bearing in mind the current challenges
and potential. The rest of this paper organizes as follows:
Section 2 summarizes the state of the art of the algorithms
and gives a brief overview of RL applications. Section 3
provides a framework to figure out how to apply these
algorithms to construction robot applications. Section 4
presents a simple case study to adopt the RL algorithms
and explains how to set up the algorithms and the
environment. Section 5 discusses the results, and Section
6 summarizes the findings and provides further
advancement for future research.

2 State-of-the-art RL

2.1 RL Overview
RL is about training an agent to interact with its

environment. The agent arrives at different scenarios
known as states by performing actions. Actions lead to
rewards which could be positive or negative [8].

Some key terms that describe the essential elements
of an RL problem are as shown in Figure 1:

a. Environment — Physical world in which the
agent operates

b. State — Current situation of the agent 𝑆𝑆𝑡𝑡, Next
situation 𝑆𝑆𝑡𝑡+1 after taking an action.

c. Action — Step 𝐴𝐴𝑡𝑡 taken by the agent when in a
particular state.

d. Reward — Feedback from the environment 𝑅𝑅𝑡𝑡 .
e. Policy — Method to map an agent’s state to

actions.
f. Q-Value — Expected return 𝑞𝑞π(𝑠𝑠,𝑎𝑎) starting

from state 𝑆𝑆𝑡𝑡, following policy π, taking action
𝐴𝐴𝑡𝑡, used to determine how good an action is.

The RL process is a cycle that begins with the
observation of a current state, choosing an action,
observing the received state, and updating the evaluation
of its value function based on the action taken. After that,
the next cycle begins.

Figure 1. Reinforcement learning scheme

If the action’s highest quality value (Q-value) is
selected in every state, it results in the optimal policy. Q-
learning finds an optimal policy in the sense of
maximizing the expected value of the total reward over
any successive steps, starting from the current state.

Policy Gradient is another popular method. It does not
calculate the Q-value but instead uses a policy. The
policy learns a mapping from every state to act, and its
objective is to find which actions lead to higher rewards
and increase their probability. The policy gradient
observes the environment, acts in it and keeps updating
its policy based on its rewards. After multiple iterations,
the policy converges to a maximum value.

In section 4, our example that illustrates how to adopt
Deep Reinforcement Learning (DRL), and Multi-agent
Reinforcement Learning (MARL) on construction robots,
will mainly focus on these two most used methods.

2.2 DRL to handle the dynamic environment
In situations with extensive state and action spaces, it

is not feasible to learn the policy for each state and action
pair. DRL allows agents to make decisions from high-
dimensional and unstructured input data [9] using neural
networks to represent policies. DRL combines both the
technique of giving rewards based on actions from RL
and the idea of using a neural network for learning feature
representations from deep learning [10]. DRL is among
the most promising algorithms when a predefined
training dataset is required, which suits robotic
manipulation and control tasks [11].

DRL is firstly used in video games and simulated
control, which does not connect with the constraints of
learning in natural environments. In 2015, Mnih et al. [7]
used a Deep Q-Network (DQN) structure to create an
agent that outperformed a professional player in 49
classic Atari games. With the development of algorithms,
DRL has also demonstrated promises in enabling

376

39th International Symposium on Automation and Robotics in Construction (ISARC 2022)

physical robots to learn complex skills in the real world
[12]. For example, DRL algorithms allow robots to learn
tasks such as door opening [13] and to grasp and
assemble objects using manipulators [14] with low-
dimensional state observations.

With the exact logistics, by adopting the DRL
algorithms to construction robots, robots can be trained
in a dynamic environment. with simulation or execution
in the real world, the robot will generate its dataset
autonomously by accumulating its experience. And then,
with iterations of training, the robot could find the
optimal actions to take from the dataset generated when
given an initial state.

2.2.1 MARL to solve multi-agent situations

As real-world problems have become increasingly
complicated, there are many situations where a single
DRL agent cannot cope. Traditional RL approaches such
as Q-Learning or policy gradient are poorly suited for
multi-agent environments. One issue is that each agent’s
policy changes as the training progresses, and the
environment becomes non-stationary from any
individual agent’s perspective [15]. Learning among the
agents sometimes causes changes in an agent’s policy
and can affect the optimal policy of other agents. The
estimated potential rewards of action would be inaccurate,
and therefore, good policies at a given point in the multi-
agent setting could not remain so in the future. To solve
this problem, based on the current literature, generally,
two ways are used chiefly to solve this multi-agent
framework.

The centralized learning approach assumes a joint
model for all the agents’ actions and observations [16]. A
centralized policy maps the joint observation of all the
agents to joint action. A significant drawback of this
approach is that it is centralized in both training and
execution and leads to an exponential growth in the
observation and actions spaces with the number of agents.

The centralized paradigm is usually a beneficial
choice for exchanging information between agents, and
problems like non-stationarity, partial observability, and
coordination can be diminished [17]. In 2016, Mnih et al.
[18] introduced a lightweight approach based on actor-
critic architecture by simultaneously training multiple
agent-environment instances. As a result, many other
works have started to extend the state-of-the-art single-
agent asynchronous advantage actor-critic algorithm to
enable multi-agent training to accomplish more
sophisticated tasks. Elfakharany et al. [19] proposed
another framework using the policy gradient method
known as Proximal Policy Optimization (PPO) to
allocate path planning globally in a shared environment
among multiple robots.

The second method uses decentralized learning. In
the decentralized execution paradigm, the agents make
decisions independently according to their individual
policies [16]. Multiple agents work together to learn a

homogeneous, distributed policy toward a common goal
without explicitly interacting. One of the advantages of
this approach is that it makes the learning of
heterogeneous policies easier. It can be beneficial in
domains where agents may need to take on specific roles
to coordinate and receive a reward. For example,
Sartoretti et al. [20] proposed an approach that relied on
decentralized policy in an entirely visual system and
succeeded in multi-agent-based brick construction. With
a similar actor-critic architecture. However, training
individual policies does not scale to many agents.
Because the agents do not share the experience, this
approach adds additional sample complexity to the RL
task. Second, as the agents are learning and adjusting
their policies, the change in the policies make the
environment dynamics non-stationary. Stored
experiences can be quickly meaningless due to the
changing dynamics of other agents.

In addition to these two generally used methods, to
speed up the learning procedure, another method can be
used as a supplement by adding prior knowledge to guide
the multi-agent learning process. Prior knowledge can
dramatically help guide the learning process. These
approaches significantly reduce the search space and,
thus, speed up the learning process [21]. For example, in
[22, 23], both the prior knowledge and prior rules are
used to improve the DQN algorithm to solve the multi-
robot path-planning problem.

3 RL with construction robots
RL has been widely adopted in different industries

such as video games, marketing, public services, and
manufacturing; however, there is no review of combining
RL techniques with the construction industry. Aiming to
inspire future research into solving the single-agent and
multi-agent construction task execution problem, this
section presents a survey discussing the possible
challenges, opportunities, and research areas for the
adoption of RL with construction robots based on
previous studies and applications in relevant areas.

3.1 Challenges of construction robot training
3.1.1 Hard to build up the training environment

As an essential branch of machine learning, In
comparison to supervised and unsupervised learning, few
works have been published using the RL algorithm in the
construction research field. The main reason for this may
be that RL is a trial and error-based algorithm, which is
hard for researchers to build up the training scheme in
construction scenarios [24]. It is hard to initialize the
agent(s) and the environment. To address that, RL
research has generally been divided into two types of
works [10]. The first type uses simulated control by
testing virtual data in a simulated environment to verify
the feasibility of robotic manipulation in the real world.

377

39th International Symposium on Automation and Robotics in Construction (ISARC 2022)

The second type is to ask the robot to sense the natural
environment and learn directly in a real-world
environment through trials and errors.

Due to the existence of many complex and random
factors on the construction site, it is often impractical to
develop an explicit construction environment based on
the real-world situation. Construction sites are dynamic.
Tracking changes and simulating real-world physics is
hard in real-time. Besides, the simulation of robot models
is also time-consuming. Generally, the simulation can
only mimic the situation in small-scale scenarios, which
is insufficient for large-scale construction operations. For
real-world RL learning, errors or collision happens, and
construction robotic systems are fragile and expensive.
Therefore, it is not wise to test the robot directly on a
dangerous construction site.

3.1.2 Construction tasks are hard to simulate

As the construction site evolves, it is hard to model
the dynamics between states and actions and set up
constraints and reward functions. In addition,
construction tasks are unique for the construction
application. No generalized building principles can be
applied to all tasks or projects. Understanding the
mapping between actions and states requires much
expertise and prior knowledge to solve the physical
equations and write down the scripts to control the robot,
not to mention writing out the temporally and spatially
coupled operational constraints or setting up specific
goals for a characterized structure.

Moreover, it is challenging to solve large-scale
construction work in real-time. When optimization is
needed, these methods must compute all possible
solutions entirely or partially and choose the best one, so
the computation process is time-consuming when the
solution space is vast [25].

3.1.3 Multi-workers working in the same
environment with different roles

The construction industry is overwhelmed with
resource planning, risk management, and logistic
challenges, resulting in design defects, project delivery
delays, cost overruns, and contractual disputes.
Systematically putting all these factors into robotic
learning is also a challenging job.

A construction job is a typical scenario that involves
interaction among multiple agents, where emergent
behavior and complexity arise from agents evolving
together. For example, in collaborative construction
activity, different agents have different tasks in the same
environment to complete the activity. We need to define
the working area for each individual and show them the
path of their work routine to avoid physical collisions.
Besides, because of the resource or material limitations,
we need to wisely allocate the resources, arrange the
sequence of operations for each agent, and build up a
scheduling network. All these happen in a multi-agent

domain. Successfully scaling RL to environments with
multiple agents is crucial to improving construction
robots’ eligibility.

3.2 Opportunities
3.2.1 Mega data generated and stored in the

construction industry

The Building Information Model (BIM) is a crucial
contribution to the construction industry. The BIM
consists of a three-dimensional graphical reproduction of
the building geometry and a related database in which all
data, properties, and relations are stored [26]. BIM
provides digital models for RL simulation and massive
data stored to represent components on the job site. With
this information fed to the robot, we could build up a real-
time simulator for RL training, and a more accurate
construction process could be simulated to represent the
physical feedback. The virtual infrastructure represented
in augmented reality (AR) will improve the user
interaction with intelligent infrastructure for specific
applications such as maintenance, training, and
wayfinding. This could solve the first challenge that the
construction industry lacks task planning simulators.

3.2.2 Development of RL algorithms

As stated in section 2, combined with developments
in deep learning, DRL has emerged as an accelerator in
related fields. DRL can help solve the problem of finding
the optimal policy between state and actions through
neural networks. Also, it can speed up the training
process to make the simulation of construction tasks
feasible. Besides, from the well-known success in single-
agent DRL, such as Mnih et al. [7], we now witness a
growing interest in its multi-agent extension to simulate
and find the optimal strategy in a higher dimension. This
can better represent the real situations on the job site and
show the potential to combine different roles of robotic
workers to collaborate just like human beings.

3.2.3 Human-robot interaction

As stated in Section 2, one can ease the training
process by combining it with the proper operation in
advance, just as the supervised learning, but somehow it
will not influence the general structure of the DRL
algorithm. The only contribution is to speed up the
convergence and add the correct episode into the
simulation process with a user-defined map. As [27]
stated, there has been a rising demand to provide human
feedback in the agent training process. Another more
feasible method is proposed by creating a goal map,
which integrates human strategies before the training
process [28]. RL algorithms provide other choices in
human-robot collaboration with only limited prior
knowledge from human beings. New formats such as
augmented reality (AR) or game-engine-based
simulation can be further developed to teach the robot

378

39th International Symposium on Automation and Robotics in Construction (ISARC 2022)

how to initialize the learning process, prevent unsafe
behavior, and define the goal or reward accordingly.

3.3 Research areas
After identifying some of the challenges and

opportunities for RL-based construction robot
applications, we put forward some possible research
areas to guide future research on such innovative systems.

3.3.1 Simulator set up

First, as we identified in the Challenges and
Opportunities sections, capturing the real-world
environment into simulated augmented ones is a priority
for RL-based construction robots to run the simulation.
BIM-based digital twins could provide detailed
information and the possibility to track real-time changes
during construction. The communication between such
models with the robotic system needs a platform to
connect robotic training scripts with the BIM
environment. A possible solution is integrating the ROS
system with game engines such as Gazebo, Unreal or
Unity to render the environment and imitate the physics
from the real world. The combination between ROS and
BIM (digital twin) allows the user-defined scripts for
robotic control and visualization in real-time. This could
be a critical topic for future research.

3.3.2 DRL algorithm advancing

Second, developing RL algorithms for robotic control
is always a trend for advancing such systems. For
example, algorithms that allow a mobile robot to reach
target positions and navigate safely are open research
fields [29]. Besides, many researchers are working on
robotic manipulation, such as grasping and door-opening
robots. In this way, there is great potential for us to
develop the RL algorithms based on construction
activities. Many researchers have succeeded in
implementing the single repetitive work of construction
robots, such as bricklaying and drilling. With the formula
representing the construction dynamics, we can quickly
adapt the RL algorithm structure to allow construction
robots to fulfill such tasks in a more dynamic
environment. The robot will then learn how to modify its
actions to adapt to the changes in the environment,
making the construction robot brighter and more easily
implemented in the industry.

3.3.3 MARL algorithm advancing

Finally, instead of low dimensional observation on
the single-agent repetitive tasks, a higher dimensional
network for MARL will automate construction tasks in
collaborative ways just like human beings. As [30] stated,
a higher level of on-site automated robots should fulfill
perception, mobility, and manipulation tasks. Based on
this and the essential characteristics of construction work,
we can categorize the MARL algorithms into two parts
[19]. Multi-Robot Task Allocation (MRTA) and Multi-

Robot Path Planning (MRPP) as two separate steps, each
with its own set of algorithms. The MRTA algorithm
assigns each robot to a task to determine the optimal way
to allocate tasks and resources, follow the constraints and
manipulate specific tasks under a predefined schedule.
The MRPP algorithm guides each robot through the
environment towards the assigned goal position while
avoiding both static and dynamic obstacles such as
temporary structures and moving laborers or other robot
agents.

4 Case study
This section presents a path planning mobile robot

application developed based on the [31] to set up a
foundation for RL-based construction robots in single-
agent and multi-agent scenarios.

4.1 Simulator set up
We developed an experimental test for goal-oriented

navigation and obstacle avoidance tasks using a
TurtleBot3 Waffle Pi in the Gazebo simulation
environment (Figure 2a) for behavior learning in
autonomous agents.

(a) (b)

Figure 2. Gazebo environment for single-agent (a) and
multi-agent robot environment path planning (b)

In the Gazebo simulation, to define the state of the
robot, we need to observe the environment and describe
the spatial relationship between them. Besides, to
measure the right movement of the robot, we also need to
sense the position of the virtual markers. Thus, with 24
sensors embedded in the robot model in the simulated
environment, we define the state size for this single robot
setting to be 26, 24 LDS (Laser Distance Sensor) values,
along with the other two values: distances to goal and
angle to goal.

Where LDS denotes the (24) values that the LIDAR
sensor emits, the Distance represents the distance to the
goal, and the Angle is the angle between the robot
heading and vector to the goal.

4.2 DRL algorithm for single-agent robot
navigation

The reinforcement training algorithms were run on a
GPU with NVIDIA GeForce GTX 2060 (the CPU was an

379

39th International Symposium on Automation and Robotics in Construction (ISARC 2022)

8-Core Intel (R) Xeon (R) CPU E7) and implemented
using the OpenAI Baselines package with DQN and
DDPG. The DDPG and DQN algorithms were modified
to process a weighted reward.

The goal is to train a Deep Q-Networks (DQN) agent
to learn an optimal policy to navigate the robot from the
initialized position to a goal position (user set up) with
minimum effort.

Besides, we also adopted the Deep Deterministic
Policy Gradient (DDPG) agent-based training algorithm,
which allows continuous control of a robot. In our case
we have linear velocity (0 to 0.22 m/s) and angular
velocity (-1 to 1 rad/s) as outputs.

The robot has five actions that can act on depending
on the type of state (Figure 3). The robot has a fixed linear
velocity of 0.15 m/s, which determines the angular
velocity. The linear velocity has discrete actions, as
shown in Figure 3a. The angular velocity is determined
by the state and the linear velocity, as shown in Table 1.
The corresponding values are shown in Figure 3b. Table
1 also shows the reward functions.

(a) (b)

Figure 3. Direction of the different actions (a) and
corresponding angular velocity (b)

Table 1. Reward function equation and parameters

Reward function Parameter

𝜃𝜃 =
𝜋𝜋
2 + 𝑎𝑎𝑎𝑎𝑎𝑎 ∗

𝜋𝜋
8 + 𝜑𝜑 𝜃𝜃：𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝑓𝑓𝑎𝑎𝐴𝐴

𝜑𝜑：𝑌𝑌𝑎𝑎𝑌𝑌 𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓𝑎𝑎
𝑅𝑅𝜃𝜃 = 5 ∗ 1−𝜃𝜃 𝑅𝑅𝜃𝜃 ∶ 𝑅𝑅𝐴𝐴𝑌𝑌𝑎𝑎𝑓𝑓𝑅𝑅 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝑅𝑅𝑑𝑑 = 2
𝐷𝐷𝑐𝑐
𝐷𝐷𝑔𝑔

𝑅𝑅𝑑𝑑 ∶ 𝑅𝑅𝐴𝐴𝑌𝑌𝑎𝑎𝑓𝑓𝑅𝑅 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑅𝑅𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝐴𝐴𝑎𝑎𝐴𝐴
𝐷𝐷𝑐𝑐:𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴𝑎𝑎 𝑅𝑅𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝐴𝐴𝑎𝑎𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝑓𝑓𝑎𝑎𝐴𝐴
𝐷𝐷𝑔𝑔 𝐴𝐴𝑟𝑟𝑑𝑑𝑓𝑓𝐴𝐴𝐶𝐶𝑎𝑎𝐴𝐴 𝑅𝑅𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝐴𝐴𝑎𝑎𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝑓𝑓𝑎𝑎

𝑅𝑅 = 𝑅𝑅𝜃𝜃 ∗ 𝑅𝑅𝑑𝑑

𝑑𝑑𝑓𝑓 −
1
2𝜋𝜋 < 𝜃𝜃 <

1
2𝜋𝜋

𝑅𝑅𝜃𝜃 ≥ 0 𝐴𝐴𝐴𝐴𝑑𝑑𝐴𝐴 < 0

4.3 MARL algorithm for robot navigation
For the MARL algorithm, we used the DQN network

to train four TurtleBot3 robots in the same working
environment to achieve different goals (Figure 2b). We
used the centralized learning or decentralized execution
paradigm as discussed in the literature, in which each
robot has a copy of the policy network, and each robot
collects its data (𝑂𝑂𝑖𝑖𝑡𝑡,𝑎𝑎𝑖𝑖𝑡𝑡 , 𝑓𝑓𝑖𝑖𝑡𝑡) from the environment. Each
robot (𝑑𝑑) at time step (𝑎𝑎) receives an observation (𝑂𝑂𝑖𝑖𝑡𝑡) and
calculates the output action (𝑎𝑎𝑖𝑖𝑡𝑡) that drives the robot
from the start position towards the goal position. The
observation for each robot is composed of several parts:

The first part is the relative positions of all the goals in
the robot’s local polar coordinates. The second part is the
relative positions of all the goals in the other moving
robots’ local polar coordinates. Last but not least is the
laser scanner measurements. The reward function 𝑓𝑓𝑖𝑖𝑡𝑡 is
designed to ensure each robot move towards the unique
zone set up separately. It penalizes getting near obstacles,
colliding with other robots, or reaching the wrong goal
position.
After each episode, it sends data rollouts to a centralized
copy of the policy. The gradients are then calculated on
the centralized policy, and the centralized policy is
updated. After that, each robot receives a copy of the
updated policy weights to start collecting a new batch of
data. The episode ends when either the robots have a
collision, when all the robots reach all the goal positions,
or when the episode duration is exhausted.

5 Results

5.1 Single-agent DRL
To compare DDPG and DQN, it was necessary to

define metrics. The reward was chosen as the primary
indicator. Simulation results in a world of fixed obstacles
and random start and end positions are shown in Figure
4. DQN achieved the average target score somewhere
after 200 episodes, with each episode consisting of a
maximum of 120 time steps (Figure 4a). Training a
DDPG generally tends to take more time compared to
DQN. In this case, it took about 600 episodes to achieve
the average score (Figure 4b).

One of the reasons is that the number of parameters
to deal with in DDPG is much higher than in DQN and
requires more computation resources. DQN is a value-
based learning method, whereas DDPG is an actor-critic
method. With DDPG, we have to fine-tune not one but
two neural network models. Moreover, since the
performance of the actor model strongly depends on the
critic’s performance, they both must have proper stable
growth, which is quite challenging to assure.

(a) (b)

Figure 4. DQN reward (Temporal difference) (a) and
DDPG reward (Actor-critic) (b)

The second reason is that DQN is training under
discrete action space, with less uncertainty than the
DDPG ones and continuous action selections. Although
DQN was successful in more significant dimensional
problems, such as the Atari game, the action space is still
discrete. However, for many tasks of interest, especially

380

39th International Symposium on Automation and Robotics in Construction (ISARC 2022)

the physical control tasks of robots, the action space is
mostly continuous.

5.2 Multi-agent DRL (MARL)
5.2.1 Decentralize learning

Figure 5b shows that the cumulative reward increases
over time and reaches a stabilized value, which means the
decentralized training succeeds in collaborative path
planning. The episode length, Figure 5a, shows the length
of each episode in the environment after all agents reach
the goals. The agents struggle to complete the tasks
within the episode limit for the initial few episodes, but
we observe a drop in the episode length as the agents
learn. Finally, it reaches a platform, which indicates that
it takes 20 s for all the robots to reach the assigned goals
in each episode. For decentralized learning, it is easy to
get to the desired reward with limited time steps. The
steps to take are gigantic, requiring almost 4 million
episodes of training periods; this is because multi-agent
collaboration leads to an exponential growth in the
observation and actions spaces with the number of agents.

Nevertheless, the results are faster converge than the
centralized training. Because all the agents do not need
to share the experience, which eliminates additional
sample complexity to set up the neural networks, it will
take shorter to find the optimal strategies. Besides, the
final result seems robust with a static platform. Less
interface leads to a less dynamic environment, which
simplifies the whole process.

(a) (b)

Figure 5. Decentralized training result (DQN) Episode
Length (a) and Cumulative Reward (b)

5.2.2 Centralized learning

Unlike decentralized learning, centralized learning
could not reach the expected platform after a long
training period in the first 2 million episodes (Figure 6a).
The robot could not find the desired goals because the
robot needed to find the desired joint observations in the
same joint actions. This is because agents do share the
experience, add additional sample complexity, and have
significant computational burdens to set up the neural
networks, which means it will take longer to initialize the
simulation and find the optimal strategies. Thus, it takes
longer for the robot to initialize the mapping between
states and action, which takes longer for the robot to find
the optimal trajectory in the beginning. As shown in
Figure 6a, it takes almost 1,000 s for the first 3 million
episodes to start. We can also see that the result from

centralized learning is not as good as the one in
decentralized learning. After a long training period, 5
million episodes (Figure 6b), the final result still does not
converge. This is because some mapping between state
and actions is not correctly build-up and the interface
between different agents makes it harder to map the states
to the actions. The change in the policies makes the
environment’s dynamics change, which will cause
deviations in finding the optimal strategy and may take a
longer time for the robot to adjust to reach its goals.

The summary of the results (metrics used for
comparison purposes) for each scenario is shown in
Table 3. In general, for a single-agent reinforcement
learning task, it is accessible for the robot to find the
optimal solution in a short period. However, as more
agents come into the same environment, the variables
such as states and actions lead to explosive growth, which
results in significant computational burdens and sample
complexities. One of the robust ways to solve this
problem is to ask the robots to share their experiences and
get feedback in the same reference domain. If not all
information is handled and transformed, the robot could
also learn, but it is pretty hard to find the optimal strategy.

(a) (b)

Figure 6. Centralized training result (DQN) Episode
Length (a) and Cumulative Reward (b)

Table 3: Results for the metrics from each scenario.

Metric
DRL

(DQN)
MARL

(Decentralized)
MARL

(Centralized)
Episode

to
converge

400 4e6
5e6

(Not converge)

Episode
length 20 s 20 s

450
(Not converge)

6 Conclusions and outlook
This study gives an overview of RL and DRL

algorithms, discusses the challenges, opportunities, and
research areas of the integration of RL with construction
robot applications, and implements a part of them in a
simple case study to illustrate how they can be used in
construction robots applications for path planning. This
study shows that, as expected, for simple tasks such as
navigation, single-agent RL algorithms (e.g., DQN and
DDPG) effectively solve the problem, with few iterations
and durations to train. However, the computational
resource (training period, episode length) grows

381

39th International Symposium on Automation and Robotics in Construction (ISARC 2022)

exponentially when more agents come into the same
environment (more realistic for construction tasks).
Using a decentralized learning algorithm is feasible to
train multi-agents in those cases. The only problem is
efficiency, as it takes a long training time. Still, the results
are robust because this method provides a suitable
evolving environment without too many changes to deal
with, unlike centralized training. Therefore, it can be said
that for the case study investigated, the decentralized
learning approach could be better suited for complex
construction task simulations.

Ongoing work by the authors includes the
investigation of other RL algorithms for single task
manipulation and execution, such as bricklaying,
painting, door installation, etc., to prove the eligibility of
such a combination of construction robot applications
with RL. Our future goals include: 1) Adopting and
developing current DRL and MARL algorithms for
construction robot applications. 2) Adopting the multi-
robot framework to solve complex tasks (e.g., laying
bricks to build up a user-defined structure) through the
cooperation of individual agents. 3) Assign different
characters that allow different robots to work in different
roles, such as manipulator, inspector, material delivery,
etc. 4) Conducting the simulation in game engines such
as Gazebo, Unreal, or Unity, and setting up
communication among different platforms by using BIM
models, this set up a great foundation for future
verification in a real environment. 5) Benchmarking for
efficiency of other algorithms to see which one is the best
fit for the construction robot applications.

References
[1] Recht B., A tour of reinforcement learning: the view from

continuous control. Ann Rev Control Robot Autonom Syst
2019; 6: 253–279.

[2] Mahadevan S. and Theocharous G. Optimizing production
manufacturing using reinforcement learning. In: FLAIRS
Conference, 18 May 1998, pp. 372–377. AAAI Press. 3.

[3] Silver D., Hubert T., Schrittwieser J., A general
reinforcement learning algorithm that master’s chess, shogi,
and go through self-play. Science 2018; 362(6419): 1140–
1144. 4.

[4] Kober J., Bagnell JA., and Peters J. Reinforcement learning
in robotics: a survey. Int J Robot Res 2013; 32(11): 1238–
1274. 5.

[5] Isele D., Rahimi R., Cosgun A., Navigating occluded
intersections with autonomous vehicles using deep
reinforcement learning. ICRA, Brisbane, QLD, Australia, 21–
25 May 2018, pp. 2034–2039.

[6] Yayin X., Ying Z., Przemyslaw S., Lieyun D., Machine
learning in construction: From shallow to deep learning,
Developments in the Built Environment, Volume 6, 2021,
100045.

[7] Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level
control through deep reinforcement learning. Nature 518,
529–533 (2015).

[8] Shopov V., and Markova V., “A Study of the Impact of
Evolutionary Strategies on Performance of Reinforcement
Learning Autonomous Agents”, ICAS 2018, p.56-60, 2018.

[9] Dresp-Langley B., Ekseth O.K., Fesl J., Gohshi S., Kurz M.,
Sehring H.W., Occam’s Razor for Big Data? On detecting

quality in large unstructured datasets. Appl. Sci. 2019, 9, 3065.
[10] Ibarz J., Tan J., Finn C., Kalakrishnan M., Pastor P., Levine

S., How to train your robot with deep reinforcement learning:
lessons we have learned. The International Journal of
Robotics Research. 2021; 40(4-5):698-721.

[11] Rongrong L., Florent N., Philippe Z., Michel D.M., Birgitta
D., (2021). Deep Reinforcement Learning for the Control of
Robotic Manipulation: A Focussed Mini-Review. Robotics.
10. 1-13.

[12] Zhang T., Mo H.. Reinforcement learning for robot research:
A comprehensive review and open issues. Journal of
Advanced Robotic Systems. May 2021.

[13] Gu S., Holly E., Lillicrap, T., Levine S. (2017) Deep
reinforcement learning for robotic manipulation with
asynchronous off-policy updates. ICRA, 3389–3396.

[14] Haarnoja T., Pong V., Zhou A., Dalal M., Abbeel P., Levine
S., Composable deep reinforcement learning for robotic
manipulation. ICRA (2018a).

[15] Lowe R., Wu Y., Tamar A., Multi-agent actor-critic for
mixed cooperative-competitive environments. arXiv preprint
arXiv:1706.02275, 2017.

[16] Lyu, X et al., Contrasting Centralized and Decentralized
Critics in Multi-Agent Reinforcement Learning, 20th AAMAS.
2021

[17] Gronauer S., Multi-agent deep reinforcement learning: a
survey. Artif Intell Rev (2021).

[18] Mnih V., Badia A. P., Mirza M., Graves A., et al.,
Asynchronous methods for deep reinforcement learning. In
International Conference on Machine Learning, pages 1928–
1937, 2016.

[19] Elfakharany A., Towards Multi-Robot Task Allocation and
Navigation using Deep Reinforcement Learning 2020 J.
Phys.: Conf. Ser. 1447 012045

[20] Sartoretti G., Wu Y., Paivine W., Distributed reinforcement
learning for multi-robot decentralized collective construction.
Springer, Cham, 2019: 35-49.

[21] Kober J., Bagnell J. A., and J. Peters J., 2013. Reinforcement

learning in robotics: A survey. Int. J. Rob. Res. 32, 11, 2013,
1238–1274.

[22] Yang Y., Juntao L., Lingling P., (2020), multi-robot path
planning based on a deep reinforcement learning DQN
algorithm. CAAI Trans. Intell. Technol., 5: 177

[23] Li B., Liang H., Multi-Robot Path Planning Method Based on
Prior Knowledge and Q-learning Algorithms. 2020 J. Phys.:
Conf. Ser. 1624 042008

[24] Chung, H. et al. Brick-by-Brick: Combinatorial Construction
with Deep Reinforcement Learning, 35th NeurIPS 2021

[25] Yu L. et al., "Multi-agent deep reinforcement learning for
HVAC control in commercial buildings", IEEE Trans. Smart
Grid, vol. 12, no. 1, 407-419, Jan. 2021.

[26] Will S., (2019). Deep Reinforcement Learning Algorithms in
Intelligent Infrastructure. Infrastructures. 4. 52.

[27] Long P., Fan T., Liao X., Liu W., Zhang H., and Pan J.,
“Towards Optimally Decentralized Multirobot Collision
Avoidance via Deep Reinforcement Learning,” in ICRA,
2018.

[28] Zhou B., Khosla A., Lapedriza A., Oliva A., and Torralba A.,
Learning deep features for discriminative localization. In
CVPR, pages 2921–2929, 2016.

[29] Xu X. and Garcia de Soto B., "On-site Autonomous
Construction Robots: A review of Research Areas,
Technologies, and Suggestions for Advancement," 37th
ISARC, Kitakyushu, Japan, 2020.

[30] Christiano P. F., Leike J., et al.. Deep reinforcement learning
from human preferences. Advances in Neural Information
Processing Systems, pages 4302, 2017.

[31] ROS Packages for TurtleBot3 Machine Learning,
https://github.com/ROBOTIS-
GIT/turtlebot3_machine_learning.git

382

	1 Introduction
	2 State-of-the-art RL
	2.1 RL Overview
	2.2 DRL to handle the dynamic environment
	2.2.1 MARL to solve multi-agent situations

	3 RL with construction robots
	3.1 Challenges of construction robot training
	3.1.1 Hard to build up the training environment
	3.1.2 Construction tasks are hard to simulate
	3.1.3 Multi-workers working in the same environment with different roles

	3.2 Opportunities
	3.2.1 Mega data generated and stored in the construction industry
	3.2.2 Development of RL algorithms
	3.2.3 Human-robot interaction

	3.3 Research areas
	3.3.1 Simulator set up
	3.3.2 DRL algorithm advancing
	3.3.3 MARL algorithm advancing

	4 Case study
	4.1 Simulator set up
	4.2 DRL algorithm for single-agent robot navigation
	4.3 MARL algorithm for robot navigation

	5 Results
	5.1 Single-agent DRL
	5.2 Multi-agent DRL (MARL)
	5.2.1 Decentralize learning
	5.2.2 Centralized learning

	6 Conclusions and outlook
	References

